
VMWARE TECHNICAL NOTE
VMware Virtual Disks

Virtual Disk Format 1.0
Virtual machines created with VMware products typically use virtual disks. The virtual disks,
stored as files on the host computer or on a remote storage device, appear to the guest
operating systems as standard disk drives.

This technical note begins with a high-level introduction to the layout of the files that make up a
VMware virtual disk of the type used by VMware Workstation 4, VMware Workstation 5, VMware
Player, VMware GSX Server 3, VMware Server, and VMware ESX Server 3. It then drills down into
the details of the data structures inside those virtual disk files.

The document contains the following sections:

• Layout Basics on page 2

• The Descriptor File on page 3

• Simple Extents on page 6

• Hosted Sparse Extents on page 6

• ESX Server Sparse Extents on page 10

• Glossary on page 13

Virtual machines created by VMware products other than VMware Workstation 4, VMware
Workstation 5, VMware GSX Server 3, and VMware ESX Server 3 may use formats different from
1

VMware, Inc. 3145 Porter Drive Palo Alto, CA 94304 www.vmware.com
Copyright © 1998-2006 VMware, Inc. All rights reserved. VMware, the VMware “boxes” logo and design, Virtual SMP and
VMotion are registered trademarks or trademarks of VMware, Inc. in the United States and/or other jurisdictions. Microsoft,
Windows and Windows NT are registered trademarks of Microsoft Corporation. Linux is a registered trademark of Linus Torvalds.
All other marks and names mentioned herein may be trademarks of their respective companies.
Revision: 20060308 Version: 1.0 Item: NP-ENG-Q205-099
To ensure that readers of this specification have access to the most current version, readers may download copies of this
specification from www.vmware.com and no part of this specification (whether in hardcopy or electronic form) may be
reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of VMware, Inc., except as otherwise permitted under copyright
law. Please note that the content in this specification is protected under copyright law even if it is not distributed with software
that includes an end user license agreement.
This specification and the information contained herein is provided on an “AS-IS” basis, is subject to change without notice, and
to the maximum extent permitted by applicable law, VMware, Inc., its subsidiaries and affiliates provide the document AS IS
AND WITH ALL FAULTS, and hereby disclaim all other warranties and conditions, either express, implied or statutory, including
but not limited to, any (if any) implied warranties, duties or conditions of merchantability, of fitness for a particular purpose, of
accuracy or completeness of responses, of results, of workmanlike effort, of lack of viruses, and of lack of negligence, all with
regard to the document. ALSO, THERE IS NO WARRANTY OR CONDITION OF TITLE, QUIET ENJOYMENT, QUIET POSSESSION,
CORRESPONDENCE TO DESCRIPTION OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO THE
DOCUMENT.
IN NO EVENT WILL VMWARE, ITS SUBSIDIARIES OR AFFILIATES BE LIABLE TO ANY OTHER PARTY FOR THE COST OF PROCURING
SUBSTITUTE GOODS OR SERVICES, LOST PROFITS, LOSS OF USE, LOSS OF DATA, OR ANY INCIDENTAL, CONSEQUENTIAL, DIRECT,
INDIRECT, OR SPECIAL DAMAGES WHETHER UNDER CONTRACT, TORT, WARRANTY, OR OTHERWISE, ARISING IN ANY WAY OUT OF
THIS OR ANY OTHER AGREEMENT RELATING TO THIS DOCUMENT, WHETHER OR NOT SUCH PARTY HAD ADVANCE NOTICE OF
THE POSSIBILITY OF SUCH DAMAGES.

Virtual Disk Format 1.0
those described in this document. Key areas that are not discussed in this technical note include
the following:

• Virtual disks created in legacy mode in Workstation 5, or virtual disks created in ESX Server
2 or earlier, GSX Server 3 or earlier, Workstation 4 or earlier, or VMware ACE

• Device-backed virtual disks

• Encryption

• Encrypted extents

• Encrypted descriptor files

• Defragmenting a virtual disk

• Shrinking a virtual disk

• Consolidating virtual disks

Layout Basics
VMware virtual disks can be described at a high level by looking at two key characteristics.

• The virtual disk may use backing storage contained in a single file, or it may use storage
that consists of a collection of smaller files.

• All of the disk space needed for a virtual disk’s files may be allocated at the time the virtual
disk is created, or the virtual disk may start small and grow only as needed to accomodate
new data.

A particular virtual disk may have any combination of these two characteristics.

One common characteristic of recent-generation VMware virtual disks is that a text descriptor
describes the layout of the data in the virtual disk. This descriptor may be saved as a separate file
or may be embedded in a file that is part of a virtual disk. The section titled The Descriptor File
on page 3 explains the information contained in the descriptor.

The way a virtual disk uses storage space on a physical disk varies, depending on the type of
virtual disk you select when you create the virtual machine.

Initially, for example, a virtual disk consists of only the base disk. If you take a snapshot of a virtual
machine, its virtual disk includes both the base link and a delta link (referred to in some product
documentation as a redo-log file). Changes the guest operating system has written to disk since
you took the snapshot are stored in the delta link. It is possible for more than one delta link to be
associated with a particular base disk.

Think of the base disk and the delta links as links in a chain. The virtual disk consists of all the links
in the chain.

Links in the chain that makes up the virtual disk

Link A Base disk

Link B

Link C

Delta link 1

Delta link 2
2

Virtual Disk Format 1.0
Each link in the chain is made up of one or more extents.

Extents that make up a link

An extent is a region of physical storage, often a file, that is used by the virtual disk.

In the links diagram above, links B and C are necessarily made up of extents that begin small and
grow over time, referred to as sparse extents. Link A can be made up of extents of any kind —
sparse, preallocated, or even backed directly by a physical device.

The Descriptor File
For a more detailed view of how these elements of a virtual disk come together in practice, look
at the following example text descriptor file, called test.vmdk. It describes a link in a virtual
disk that is split into files no larger than 2GB each and that starts small and grows as data is
added. The descriptor file is not case-sensitive.

Lines beginning with # are comments and are ignored by the VMware program that opens the
disk.

% cat test.vmdk

Disk DescriptorFile

version=1
CID=fffffffe
parentCID=ffffffff
createType="twoGbMaxExtentSparse"

Extent description
RW 4192256 SPARSE "test-s001.vmdk"
RW 4192256 SPARSE "test-s002.vmdk"
RW 2101248 SPARSE "test-s003.vmdk"

The Disk Data Base
#DDB
ddb.adapterType = "ide"
ddb.geometry.sectors = "63"
ddb.geometry.heads = "16"
ddb.geometry.cylinders = "10402"

The Header
The first section of the descriptor is the header. It provides the following information about the
virtual disk:

• version
The number following version is the version number of the descriptor. The default value
is 1.

• CID
This line shows the content ID. It is a random 32-bit value updated on the first write every
time the virtual disk is opened.

Every link header contains both a content ID and a parent content ID (described below).

If a link has a parent — as is true of links B and C in the diagram of links in a chain — the
parent content ID is the content ID of the parent link.

Extent 0 Extent 1 Extent 2 Extent 3
3

Virtual Disk Format 1.0
If a link has no parent — as is true of link A in the diagram of links in a chain — the parent
content ID is set to CID_NOPARENT (defined below).

The purpose of the content ID is to check the following:

• In the case of a base disk with a delta link, that the parent link has not changed since the
time the delta link was created. If the parent link has changed, the delta link must be
invalidated.

• That the bottom-most link was not modified between the time the virtual machine was
suspended and the time it was resumed or between the time you took a snapshot of
the virtual machine and the time you reverted to the snapshot.

• parentCID
This line shows the content ID of the parent link — the previous link in the chain — if there
is one. If the link does not have any parent (in other words, if the link is a base disk), the
parent’s content ID is set to the following value:

#define CID_NOPARENT (~0x0)

• createType
This line describes the type of the virtual disk. It can be one of the following:

• monolithicSparse

• vmfsSparse

• monolithicFlat

• vmfs

• twoGbMaxExtentSparse

• twoGbMaxExtentFlat

• fullDevice

• vmfsRaw

• partitionedDevice

• vmfsRawDeviceMap

• vmfsPassthroughRawDeviceMap

The first six terms are used to describe various types of virtual disks. Terms that include
monolithic indicate that the data storage for the virtual disk is contained in a single file.
Terms that include twoGbMaxExtent indicate that the data storage for the virtual disk
consists of a collection of smaller files. Terms that include sparse indicate that the virtual
disks start small and grow to accommodate data. Some product documentation refers to
these virtual disks as growable disks. Terms that include flat indicate that all space
needed for the virtual disks is allocated at the time they are created. Some product
documentation refers to these virtual disks as preallocated disks.

Terms that include vmfs indicate that the disk is an ESX Server disk.

The terms fullDevice, vmfsRaw, and partitionedDevice are used when the
virtual machine is configured to make direct use of a physical disk — either a full disk or
partitions on a disk — rather than store data in files managed by the host operating
system.

The terms vmfsRawDeviceMap and vmfsPassthroughRawDeviceMap are used
in headers for disks that use ESX Server raw device mapping.
4

Virtual Disk Format 1.0
• parentFileNameHint
This line, present only if the link is a delta link, contains the path to the parent of the delta
link.

The Extents
Each line of the second section describes one extent. The extents are enumerated beginning
with the one accessible at offset 0 from the virtual machine’s point of view. The format of the line
looks like one of the following examples:

The extent descriptions provide the following key information:

• Access — may be RW, RDONLY, or NOACCESS

• Size in sectors — a sector is 512 bytes

• Type of extent — may be FLAT, SPARSE, ZERO, VMFS, VMFSSPARSE, VMFSRDM, or
VMFSRAW.

• Filename — shows the path to the extent (relative to the location of the descriptor)

Note: If the type of the virtual disk, shown in the header, is fullDevice or
partitionedDevice, then the filename should point to an IDE or SCSI block device. If the
type of the virtual disk is vmfsRaw, the filename should point to a file in /vmfs/
devices/disks/.

• Offset — the offset value is specified only for flat extents and corresponds to the offset in
the file or device where the guest operating system’s data is located. For preallocated
virtual disks, this number is zero. For device-backed virtual disks (physical or raw disks), it
may be non-zero.

The Disk Database
Additional information about the virtual disk is stored in the disk database section of the
descriptor. Each line corresponds to one entry. Each entry is formatted as follows:

ddb.<nameOfEntry> = "<value of entry>"

When the virtual disk is created, the disk database is populated with entries like those shown in
the example descriptor. The entry names are self-explanatory and show the following
information:

• The adapter type can be ide, buslogic, lsilogic, or legacyESX. The buslogic
and lsilogic values are for SCSI disks and show which virtual SCSI adapter is configured
for the virtual machine. The legacyESX value is for older ESX Server virtual machines
when the adapter type used in creating the virtual machine is not known.

• The geometry values — for cylinders, heads, and sectors — are initialized with the
geometry of the disk, which depends on the adapter type.

Access

Size in sectors

Type of extent Filename

RW 4192256 SPARSE "test-s001.vmdk"

Access

Size in sectors

Type of extent Filename Offset

RW 1048576 FLAT "test-f001.vmdk" 0
5

Virtual Disk Format 1.0
There is one descriptor, and thus one disk database, for each link in a chain. Searches for disk
database information begin in the descriptor for the bottom link of the chain — Link C in the
illustration of links in the chain — and work their way up the chain until the information is found.

Layout of the Example Disk
The link described in the example descriptor has three extents, each of which is a file on disk.
The following diagram shows the layout of this link and the filenames of the extents:

Simple Extents
The simplest kinds of extents are backed by a region of a file or a block device. These include the
extent types shown in the descriptor as FLAT, VMFS, VMFSRDM, or VMFSRAW.

Note: A virtual disk described as monolithic and flat consists of two files. One file contains the
descriptor. The other file is the extent used to store virtual machine data.

Consider an extent that is described by the following line in a descriptor file:

RW 1048576 FLAT "test-f001.vmdk" 0

This means that the file test-f001.vmdk is1048576 sectors × 512 bytes/sector = 536870912
bytes = 512MB in size.

Note: In VMware ESX Server, each link includes only one extent.

Accessing a Sector in a Flat Extent
Assume you want access to data in a link that is made up of two flat extents. The size of the first
extent is C1. The size of the second extent is C2. You want access to sector x in the virtual disk,
and x' is the sector offset in extent 1 or 2 where x is located.

• If x >= C1, the sector is in extent2. Its relative sector offset is
x' = x – C1

• If x < C1, the sector is in extent1 at offset x.
x' = x

Hosted Sparse Extents
In a sparse extent, data storage space is not allocated in advance. Instead, space is allocated as it
is needed. A sparse extent also keeps track of whether or not data is represented in the extent.
Delta links made up of sparse extents use the copy-on-write semantic.

test-s001.vmdk test-s002.vmdk test-s003.vmdk
6

Virtual Disk Format 1.0
Each sparse extent is made up of the following blocks:

Hosted Sparse Extent Header
The following example shows the content of a sparse extent’s header from a VMware hosted
product, such as VMware Workstation, VMware Player, VMware ACE, VMware Server, or VMware
GSX Server:

typedef uint64 SectorType;
typedef uint8 Bool;

typedef struct SparseExtentHeader {
uint32 magicNumber;
uint32 version;
uint32 flags;
SectorType capacity;
SectorType grainSize;
SectorType descriptorOffset;
SectorType descriptorSize;
uint32 numGTEsPerGT;
SectorType rgdOffset;
SectorType gdOffset;
SectorType overHead;
Bool uncleanShutdown;
char singleEndLineChar;
char nonEndLineChar;
char doubleEndLineChar1;
char doubleEndLineChar2;
uint8 pad[435];

} SparseExtentHeader;

This structure needs to be packed. If you use gcc to compile your application, you must use the
keyword __attribute__((__packed__)).

Sparse header

Embedded descriptor

Redundant grain directory

Redundant grain table #0

. . .

Redundant grain table #n

Grain directory

Grain table #0

. . .

Grain table #n

(Padding to grain align)

Grain

Grain

. . .

(Optional)
7

Virtual Disk Format 1.0
Notes
• All the quantities defined as SectorType are in sector units.

• magicNumber is initialized with
#define SPARSE_MAGICNUMBER 0x564d444b /* 'V' 'M' 'D' 'K' */
This magic number is used to verify the validity of each sparse extent when the extent is
opened.

• version
The value of this entry should be 1.

• flags contains the following two bits of information in the current version of the sparse
format:

• bit 0: valid new line detection test

• bit 1: redundant grain table will be used

• grainSize is the size of a grain in sectors. It must be a power of 2 and must be greater
than 8 (4KB).

• capacity is the capacity of this extent in sectors — always a multiple of the grain size.

• descriptorOffset is the offset of the embedded descriptor in the extent. It is
expressed in sectors. If the descriptor is not embedded, all the extents in the link have the
descriptor offset field set to 0.

• descriptorSize is valid only if descriptorOffset is non-zero. It is expressed in
sectors.

• numGTEsPerGT is the number of entries in a grain table. The value of this entry for
VMware virtual disks is 512.

• rgdOffset points to the redundant level 0 of metadata. It is expressed in sectors.

• gdOffset points to the level 0 of metadata. It is expressed in sectors.

• overHead is the number of sectors occupied by the metadata.

• uncleanShutdown is set to FALSE when VMware software closes an extent. After an
extent has been opened, VMware software checks for the value of uncleanShutdown. If it is
TRUE, the disk is automatically checked for consistency. uncleanShutdown is set to TRUE
after this check has been performed. Thus, if the software crashes before the extent is
closed, this boolean is found to be set to TRUE the next time the virtual machine is
powered on.

• Four entries are used to detect when an extent file has been corrupted by transferring it
using FTP in text mode. The entries should be initialized with the following values:
singleEndLineChar = '\n';
nonEndLineChar = ' ';
doubleEndLineChar1 = '\r';
doubleEndLineChar2 = '\n';

Hosted Sparse Extent Metadata
There are two levels of metadata in a sparse extent from a hosted VMware product. Level-0
metadata is called a grain directory or a GD. Level-1 metadata is called a grain table or a GT. Each
8

Virtual Disk Format 1.0
entry in the level-0 metadata points to a block of level-1 metadata, as shown in the following
diagram:

Redundancy
VMware software keeps two copies of the grain directories and grain tables on disk to improve
the virtual disk’s resilience to host drive corruption.

Grain Directory
Each entry in a grain directory is called a grain directory entry or GDE. A grain directory entry is
the offset in sectors of a grain table in a sparse extent. The number of grain directory entries per
grain directory (the size of the grain directory) depends on the length of the extent. A grain
directory entry is a 32-bit quantity.

Grain Table
Each entry in a grain table is called a grain table entry or GTE. A grain table entry points to the
offset of a grain in the sparse extent. There are always 512 entries in a grain table, and a grain
table entry is a 32-bit quantity. Consequently, each grain table is 2KB.

In a newly created sparse extent, all the grain table entries are initialized to 0, meaning that the
grain to which each grain table entry points is not yet allocated. Once a grain is created, the
corresponding grain table entry is initialized with the offset of the grain in the sparse extent in
sectors.

Note: All the grain tables are created when the sparse extent is created, hence the grain
directory is technically not necessary but has been kept for legacy reasons. If you disregard the
abstraction provided by the grain directory, you can redefine grain tables as blocks of grain table
entries of arbitrary size. If there were no grain directories, there would be no need to impose a
length of 512 entries.

Grain
A grain is a block of sectors containing data for the virtual disk. The granularity is the size of a
grain in sectors. It is a property of the extent and is specified in the sparse extent header as
grainSize. The default is currently 128, thus each grain contains 64KB of virtual machine
data. The size of a sparse extent should be a multiple of grainSize.

Accessing a Sector in a Hosted Sparse Extent
Assume you want access to data in sector x stored in a link containing a single sparse extent. You
need to locate the grain containing this sector (if it exists) by first looking up the grain directory
entry to find the location of the grain table that records the grain’s location.

GDE#0 | GDE#1 | GDE#2 | GDE#3 | . . .

GTE#0

GTE#1

GTE#2

GTE#3

. . .

. . .

GD: level 0

GTs: level 1

GTE#0

GTE#1

GTE#2

GTE#3

. . .

. . .

GTE#0

GTE#1

GTE#2

GTE#3

. . .

. . .
9

Virtual Disk Format 1.0
The area accessible with a single grain table is

gtCoverage = number of GTEs per GT × grainSize

= 512 × 128

= 2G × 27

= 216 sectors

= 32MB

If grainSize is defined as

grainSize = 2G bytes

then

gtCoverage = 2(9+G) sectors

To verify that the grain containing the sector you are interested in has been allocated, you must
examine a grain table. To find the grain table you need to use, examine the grain directory entry
at offset E(x/gtCoverage) in the grain directory.

GDE = GD[floor(x/gtCoverage)]

Function floor is defined as: floor(s) is an integer such that

floor(s) ≤ s < floor(s) + 1

Using this grain directory entry, you can locate the grain table. The grain you want is pointed to
by

GTE = GT[floor((x % gtCoverage) / grainSize)]

If GTE is 0, that means the grain is not yet allocated. All the reads in this grain return sectors of 0s
(unless there is a parent link). The first write allocates a grain. If there is no parent, the grain is
initialized with 0s. If there is a parent link, you need to respect the copy-on-write semantic and
initialize the content of the grain by reading from the parent.

Summary

• GDE = GD[floor(x / 2(9+G))]

• GTE = GT[floor((x % 2(9+G)) / 2G)]

• [GTE == 0] <==> [grain is not present, thus
reads with no parent: return 0s;
reads with a parent: read from parent;
writes: allocate a grain and write to it]

• [GTE != 0] <==> [grain is present, read from and write to it]

ESX Server Sparse Extents
Sparse extents in ESX Server have a different layout from those in the hosted products. The
sparse extent header in ESX Server refers to the sparse extent as a COW (copy-on- write) disk.

There are two levels of metadata in a sparse extent from VMware ESX Server. The first level, or
the grain directory, refers to the set of grain directory entries (GDEs), where each GDE covers
COW_NUM_LEAF_ENTRIES (=4096) * granularity (=512 bytes) = 2MB of data. The grain directory
is stored after the COWDisk header and is updated when a new GDE is initialized or modified.
10

Virtual Disk Format 1.0
The second level in the copy-on-write metadata is a grain table (GT). The grain table is 16KB in
size and covers 4096 data sectors. A new GT is allocated when a new GDE is added and is
modified when a new GTE is allocated.

A GT is followed by the data sectors corresponding to its GTEs. Since delta links (sometimes
referred to as redo logs files) are sparse, all the data sectors are not allocated immediately after a
GT.

The following diagram illustrates this layout:

ESX Server Sparse Extent Header
The following example shows the content of a sparse extent’s header from VMwareESX Server:

typedef struct COWDisk_Header {
uint32 magicNumber;
uint32 version;
uint32 flags;
uint32 numSectors; /* Total sectors in disk */
uint32 grainSize; /* Size of data pointed to by

GTEs */
uint32 gdOffset; /* Start of GD in COW file, in

sectors */

uint32 numGDEntries;/* # of GDEs to cover numSectors*/
uint32 freeSector; /* Next free sector in COW file,

but file length is real truth.
*/

union {
struct {

uint32 cylinders;
uint32 heads;
uint32 sectors;

} root;
struct {

char parentFileName[COWDISK_MAX_PARENT_FILELEN];
uint32 parentGeneration;

} child;
} u;
uint32 generation; /* Generation - not used */
char name[COWDISK_MAX_NAME_LEN];
char description[COWDISK_MAX_DESC_LEN];
uint32 savedGeneration; /* Generation when clean -

added for 1.1*/

COWDisk header

Grain directory

Grain table

. . .

Data corresponding
to GTEs

Grain table

Data corresponding
to GTEs
11

Virtual Disk Format 1.0
char reserved[8]; // used to be drivetype.
/* Padding so header is integral number of sectors */
uint32 uncleanShutdown;
char padding[396];

} COWDisk_Header;

Notes
• magicNumber is set to

0x44574f43
which is ASCII
COWD.

• version
The value of this entry should be 1.

• flags is set to 3.

• numSectors refers to total number of sectors on the base disk.

• grainSize refers to the granularity of data stored in delta links, which is one sector by
default. Can vary from one sector to 1MB.

• gdOffset starts at the fourth sector, as the COWDisk_Header takes four sectors.

• numGDEntries is
CEIL(numSectors, leafCoverage)

• freeSector is the next free data sector. This needs to be less than the length of the
delta link. It is initially set to
gdOffset + numGDSectors;

• savedGeneration is used to detect the unclean shutdown of the delta link. It is Initially
set to 0 by diskLib.

• uncleanShutDown is used to trigger the copy-on-write metadata check in case there is
an unclean shutdown of the delta link.

• The remaining fields are not used. They are present to maintain compatibility with legacy
virtual disk formats.

ESX Server Sparse Extent Metadata
The metadata for an ESX Server sparse extent is similar to that for a sparse extent in a hosted
VMware product, as described in Hosted Sparse Extent Metadata on page 8, with the following
exceptions:

• ESX sparse extents do not include redundant copies of the grain directory.

• Grain tables have 4096 entries.

• Each grain contains 512 bytes.

Accessing a Sector in an ESX Server Sparse Extent
The method for accessing a sector in an ESX Server sparse extent is similar to that described in
Accessing a Sector in a Hosted Sparse Extent on page 9. Be sure to allow for the differences in
metadata described in ESX Server Sparse Extent Metadata above.
12

Virtual Disk Format 1.0
Glossary
The following terms are used in describing VMware virtual disks.

Chain — A collection of disk links that can be accessed as a single entity.

Child disk — A disk link in a disk chain that has a parent link.

Delta link— A link made of one or more sparse extents. It is a difference link, a child of a parent
link. It contains only data that the guest operating system has written to the disk after the
creation of the delta link. It allows VMware software to go back in time and restore the content
of the disk to the state that existed immediately before the creation of the delta link by simply
removing the delta link. Some product documentation refers to delta links as redo-log files.

Descriptor — The data about the disk abstraction such as total space or an extent list. The
descriptor may be in a separate file or embedded in the header of a sparse extent. An
embedded disk descriptor is embedded into the first extent of a disk link rather than put in a
separate disk descriptor file. An embedded disk descriptor can be used only when the first
extent of a link is sparse.

Disk — A disk chain that appears to the guest operating system to be a single physical disk.

Disk database — A name-value pair text database found in the disk descriptor. The disk
database contains information that the disk library does not need for functionality. Examples of
these kinds of values are virtual hardware version and VMware Tools version.

Extent — A region of a disk link backed by a region of a file or device. An extent can be sparse,
flat, or device. An extent does not have notions of disk properties but acts purely as storage of a
certain size. A flat extent is an extent backed by a flat file. Flat extents are sometimes referred to
as plain or preallocated. A sparse extent is an extent that does not allocate its data storage space
in advance, but allocates as it goes along. A sparse extent also keeps track of whether or not data
is represented in the extent. Sparse extents are sometimes referred to as growable.

Grain — A block of sectors containing data for the virtual machine’s disk. Granularity defines
the size of a grain. Each grain table entry points to one grain.

Granularity — The size of a single grain in a sparse extent.

Grain directory — Metadata identifying the locations of grain tables. It is ignored by more
recent VMware programs because the grain table is allocated in advance.

Grain table — Metadata identifying the locations of grains.

Link — A single node in a disk chain. A link consists of one or more extents.

Parent link— A link that has a child. A parent may also have a parent itself.
13

	Virtual Disk Format 1.0
	Layout Basics
	The Descriptor File
	The Header
	The Extents
	The Disk Database
	Layout of the Example Disk

	Simple Extents
	Accessing a Sector in a Flat Extent

	Hosted Sparse Extents
	Hosted Sparse Extent Header
	Notes
	Hosted Sparse Extent Metadata
	Accessing a Sector in a Hosted Sparse Extent

	ESX Server Sparse Extents
	ESX Server Sparse Extent Header
	Notes
	ESX Server Sparse Extent Metadata
	Accessing a Sector in an ESX Server Sparse Extent

	Glossary

